Getting Started
Bineric API Documentation
Bineric API Platform is a high-performance generative AI inference platform designed for seamless model access customization, and scalability—delivering industry-leading speed and production-ready reliability.
Introduction
Bineric provides a comprehensive suite of AI APIs that enable you to integrate advanced language processing, file conversion, and monitoring capabilities into your applications. Our APIs are designed to be easy to use while providing powerful functionality.
Base URL
https://api.bineric.com/api/v1
Authentication
🔑API Key Setup
Create an Account
Visit the Bineric platform and sign up for an account:
Access Your API Key
Access your API keys on the dashboard using these provided steps:
⚡Pay-Per-Use Access
Flexible Usage
Access all features with our simple pay-per-use model:
Usage Benefits
Everything included with your API access:
Available Models API
/ai/models
Get information about all available AI models
Response Format
{
"success": true,
"count": number,
"data": [
{
"id": string,
"name": string,
"description": string,
"type": string,
"capabilities": string[],
"provider": string,
"pricing": {
"input": string,
"output": string,
"cost_per_image": string,
"currency": string
},
"limits": {
"max_response_length": number
},
"file_support": {
"image": object,
"document": object,
"max_files": number,
"total_max_size_mb": number
},
"features": {
"streaming": boolean,
"vision": boolean,
"image_generation": boolean,
"nordic_support": boolean
}
}
]
}
Code Examples
import requests
api_key = 'YOUR_API_KEY'
headers = {
'api-key': api_key
}
response = requests.get(
'https://api.bineric.com/api/v1/ai/models',
headers=headers
)
models = response.json()
print(models)
File Conversion API
/media/base64
Convert various file types to base64 format with detailed metadata
File Support & Requirements
Audio Formats
- MP3 (.mp3)
- WAV (.wav)
- M4A (.m4a)
- OGG (.ogg)
- AAC (.aac)
- FLAC (.flac)
- WMA (.wma)
Image Formats
- JPEG/JPG (.jpg, .jpeg)
- PNG (.png)
- GIF (.gif)
- WebP (.webp)
Document Formats
- PDF (.pdf)
- Word (.doc, .docx)
- Excel (.xls, .xlsx)
- Text (.txt)
- CSV (.csv)
Size & Upload Limits
- Maximum file size: 50MB
- Single file per request
- Authenticated requests only
Code Examples
import requests
api_key = 'YOUR_API_KEY'
# Example 1: Converting an image
image_files = {
'file': ('image.png', open('image.png', 'rb'), 'image/png')
}
response = requests.post(
'https://api.bineric.com/api/v1/media/base64',
headers={'api-key': api_key},
files=image_files
)
# Example 2: Converting a document
doc_files = {
'file': ('document.pdf', open('document.pdf', 'rb'), 'application/pdf')
}
response = requests.post(
'https://api.bineric.com/api/v1/media/base64',
headers={'api-key': api_key},
files=doc_files
)
result = response.json()
print(result)
Response Format
{
"success": true,
"request_id": "req_1234567890",
"data": {
"base64String": "...",
"originalName": "example.png",
"fileInfo": {
"extension": ".png",
"mimeType": "image/png",
"category": "image"
},
"size": {
"original": 1234567,
"base64": 1645678
}
}
}
Error Responses
Validation Error (400)
{
"success": false,
"request_id": "req_1234567890",
"error": {
"type": "ValidationError",
"message": "File size exceeds 50MB",
"code": 400
}
}
Server Error (500)
{
"success": false,
"request_id": "req_1234567890",
"error": {
"type": "ConversionError",
"message": "Failed to convert file",
"details": "Error message details",
"code": 500
}
}
Chat Completions API
/ai/chat/completions
AI-powered comprehensive web research with detailed reports and citations
Available Models
Model | Capabilities |
---|---|
GPT-4New Most powerful GPT-4 model. Hosted in the EU (Stockholm). gpt-4 | TextCodeAnalysisVision |
Deep ResearchNew AI-powered comprehensive web research with detailed reports and citations. deep-research | TextWeb ResearchAnalysisCitations |
O1New Advanced AI model with improved reasoning and efficiency. o1 | TextCodeAnalysisVision |
o3-miniNew Lightweight reasoning model optimized for speed and efficiency. Hosted in the EU (Stockholm). o3-mini | TextCodeAnalysis |
Gemini 1.5 Flash Google's advanced AI gemini-1.5-flash | TextCodeVision |
Gemini 2.0 FlashNew Best for Multimodal understanding, Native tool use. gemini-2.0-flash | TextCodeVision |
Gemini 2.5 FlashNew Best for Large scale processing, low latency, high volume tasks, Agentic use cases. gemini-2.5-flash-preview-04-17 | TextCodeVision |
Gemini 2.5 ProNew Best for Coding, Reasoning, Multimodal understanding. gemini-2.5-pro | TextCodeVision |
NorskGPT Nordic language specialist norskgpt | TextCodeAnalysisNordic |
Meta Llama 3.1 8B Improved reasoning, optimized for dialogue and AI training. meta-llama-3.1-8b | TextCode |
Meta Llama 3.1 405B Meta's language model meta-llama | TextCode |
Meta Llama 3.3 70B High-performance AI with advanced language understanding. meta-llama-3.3-70b | TextCode |
Claude 3.7 SonnetNew Anthropic's most advanced model. Hosted in the EU (Frankfurt). claude-3.7-sonnet | TextCodeAnalysisVision |
DeepSeek-v3New DeepSeek 671B model. Hosted in the EU deepseek-v3 | TextCodeAnalysis |
DeepSeek-R1New DeepSeek's new reasoning model. Hosted in the EU deepseek-r1 | TextCodeAnalysis |
Speech to Text Audio transcription service. Hosted in the EU (Stockholm). speech-to-text | Speech-to-TextDiarization |
Text to SpeechNew High-quality speech synthesis service. Hosted in the EU (Stockholm). text-to-speech | Text-to-SpeechMultiple LanguagesVoice Control |
Stability AI Image generation specialist stability-ai | Image Generation |
Mistral Large 24.02New The most advanced model by Mistral. Hosted in the EU (Paris). mistral_large_24_02 | TextCodeAnalysisRAGAgents |
Llama 4 MaverickNew A 17 billion model with 128 experts for text and image tasks. llama4-maverick | TextCodeAnalysisVision |
Llama 4 ScoutNew A 17 billion model with 16 experts for text and image tasks. llama4-scout | TextCodeAnalysisVision |
Request Format
{
"model": string, // Required: Model identifier
"messages": [ // Required: Array of messages
{
"role": string, // "user" or "assistant"
"content": string,
"attachments": string[] // Optional: Array of base64-encoded files
}
],
"options": {
"temperature": number, // 0-1, default: 0.7
"max_response_length": number, // Varies by model
"top_p": number // 0-1, default: 0.95
}
}
File Support
Image Files
- Supported formats: JPEG, PNG, WebP, GIF, HEIC
- Max file size: 20MB (varies by model)
- Max dimensions: 4096x4096 (varies by model)
- Files are automatically optimized (resized/compressed)
{
"messages": [{
"role": "user",
"content": "What's in this image?",
"attachments": [
"..." // Base64 encoded image
]
}]
}
Document Files
- Supported formats: PDF, DOCX, DOC, XLSX, XLS, TXT, CSV, MD, JSON, HTML
- Max file size: 15MB (varies by model)
- Max pages: 150 (varies by model)
- Text extraction is automatic for supported formats
{
"messages": [{
"role": "user",
"content": "Summarize this document",
"attachments": [
"data:application/pdf;base64,JVBERi0xLj..." // Base64 encoded PDF
]
}]
}
Audio Files
- Max file size: 200MB
- Audio is automatically processed for optimal transcription
{
"messages": [{
"role": "user",
"content": "Transcribe this audio",
"attachments": [
"data:audio/wav;base64,UklGRiQ..." // Base64 encoded audio
]
}]
}
Text to Speech
- High-quality 24khz/160kbps audio output
- Multiple language and voice support (including Norwegian)
- SSML support for advanced voice control
- Returns base64 encoded MP3 audio
Supported Languages and Voices
Supported Languages
nb-NO
en-US
en-GB
sv-SE
da-DK
Norwegian Voices
Male Voices
nb-NO-FinnNeural
Female Voices
nb-NO-IselinNeural
nb-NO-PernilleNeural
{
"messages": [{
"role": "user",
"content": "Convert this text to speech"
}],
"options": {
"language": "nb-NO", // Norwegian
"voice": "nb-NO-PernilleNeural", // Female Norwegian voice
"pitch": "+10%", // Optional pitch adjustment
"rate": "0.9", // Optional speech rate
"volume": "+20%" // Optional volume adjustment
}
}
Audio Playback
The API returns base64 encoded audio that can be played directly in the browser.
// Play Base64 MP3 Audio
function playBase64Audio (base64Audio) => {
const audioBase64 = base64Audio.replace(/^data:audio\/mp3;base64,/, '');
const byteCharacters = atob(audioBase64);
const byteArrays = [];
for (let i = 0; i < byteCharacters.length; i++) {
byteArrays.push(byteCharacters.charCodeAt(i));
}
const byteArray = new Uint8Array(byteArrays);
const blob = new Blob([byteArray], { type: 'audio/mp3' });
const audioUrl = URL.createObjectURL(blob);
const audio = new Audio(audioUrl);
audio.play();
};
// Usage Example:
const base64AudioResponse = '...'; // Base64 string from API
playBase64Audio(base64AudioResponse);
Code Examples
import requests
import base64
api_key = 'YOUR_API_KEY'
headers = {
'api-key': api_key,
'Content-Type': 'application/json'
}
# Function to encode file to base64
def encode_file(file_path):
with open(file_path, 'rb') as file:
return base64.b64encode(file.read()).decode('utf-8')
# Example with image attachment
image_base64 = encode_file('image.jpg')
data = {
'model': 'gpt-4',
'messages': [
{
'role': 'user',
'content': 'What's in this image?',
'attachments': [f'data:image/jpeg;base64,{image_base64}']
}
],
'options': {
'temperature': 0.7,
'max_response_length': 800
}
}
response = requests.post(
'https://api.bineric.com/api/v1/ai/chat/completions',
headers=headers,
json=data
)
result = response.json()
print(result)
Response Format
{
"success": true,
"request_id": "req_1234567890",
"model": "gpt-4",
"response": "Generated text response...",
"usage": {
"prompt_tokens": 124,
"completion_tokens": 356,
"total_tokens": 480,
"total_cost": 0.00738,
"response_time_ms": 2150,
"account_info": {
"type": "paid", // "paid" or "free"
"balance": 95.26, // Only for paid users
"model_cost": { // Only for paid users
"input_cost_per_1k": 0.005,
"output_cost_per_1k": 0.015
}
},
"current_usage": { // Daily usage statistics
"requests_made": 5,
"total_input_tokens": 1240,
"total_output_tokens": 3560,
"total_cost": 0.03738
}
}
}
Error Handling
{
"success": false,
"request_id": "req_1234567890",
"error": {
"type": "ValidationError",
"message": "Detailed error message",
"code": 400
}
}
Common Errors
- ValidationError: Invalid request parameters (400)
- AuthError: Invalid or missing API key (401)
- PaidFeatureError: Attempt to use paid features with free tier (403)
- RateLimitError: Free tier daily limit exceeded (429)
- InsufficientBalance: Insufficient funds for paid tier (402)
- ProcessingError: Model processing failed (500)
Deep Research API
/ai/chat/completions
AI-powered comprehensive web research with detailed reports and citations
Overview
The Deep Research API provides AI-powered comprehensive web research capabilities. It performs extensive web searches on any topic, analyzes the information, and returns a detailed report with proper citations. This feature is fully integrated into the Unified API with both standard and streaming response options.
Request Format
{
"model": "deep-research",
"messages": [
{
"role": "user",
"content": "What are the latest advancements in quantum computing?"
}
],
"options": {
"stream": false, // Optional: Enable streaming for real-time updates (default: false)
"maxDepth": 5, // Optional: Number of research iterations (default: 5)
"timeLimit": 180, // Optional: Time limit in seconds (default: 180)
"maxUrls": 5 // Optional: Maximum URLs to analyze (default: 5)
}
}
Required Parameters
model
: Must be set to"deep-research"
to use this featuremessages
: An array of message objects. The last user message will be used as the research query
Optional Parameters
Parameter | Type | Default | Description |
---|---|---|---|
stream | boolean | false | Whether to return results as a stream of events |
maxDepth | number | 5 | Number of research iterations to perform |
timeLimit | number | 180 | Maximum time in seconds for the research |
maxUrls | number | 5 | Maximum number of URLs to analyze |
Response Types
The Deep Research API supports two response types:
Standard Response (Non-Streaming)
When using the default
stream: false
option, the API returns a single JSON response after the research completes:json{ "success": true, "request_id": "req_1234567890_abcdef", "model": "Deep Research", "response": "Detailed research analysis...", "citations": [ { "title": "Source Title", "url": "https://example.com/article", "snippet": "Relevant excerpt from the source" } // More sources... ], "activities": [ { "type": "searching", "message": "Searching for latest quantum computing research" } // More activities... ], "deep_research_info": { "usage_count": 5, "usage_limit": 50, "usage_left": 45 }, "usage": { "prompt_tokens": 20, "completion_tokens": 1500, "total_tokens": 1520, "total_cost": 0.25, "response_time_ms": 12345, "account_info": { "type": "paid", "balance": 9.75, "model_cost": { "cost_per_call": 0.25, "pricing_model": "fixed_cost_per_call" } }, "current_usage": { "requests_made": 6, "total_input_tokens": 120, "total_output_tokens": 9000, "total_cost": 1.5 } } }
Streaming Response
When using
stream: true
, the API returns a stream of Server-Sent Events (SSE) with the following event types:a. Info Event (start of research)
javascriptevent: info data: { "request_id": "req_1234567890_abcdef", "model": "Deep Research", "message": "Deep research started" }
b. Activity Events (progress updates)
javascriptevent: activity data: { "type": "searching", "message": "Searching for latest quantum computing research", "request_id": "req_1234567890_abcdef" }
Activity types include:
search
: Information about search queries and resultsanalyze
: Updates about analysis of search resultssynthesis
: Status of final report generation
c. Complete Event (final results)
javascriptevent: complete data: { "success": true, "request_id": "req_1234567890_abcdef", "model": "Deep Research", "response": "Detailed research analysis...", "citations": [ { "title": "Source Title", "url": "https://example.com/article", "snippet": "Relevant excerpt from the source" } ], "activities": [...], "deep_research_info": { "usage_count": 5, "usage_limit": 50, "usage_left": 45 }, "usage": { "prompt_tokens": 20, "completion_tokens": 1500, "total_tokens": 1520, "total_cost": 0.25, "response_time_ms": 12345, "account_info": { "type": "paid", "balance": 9.75, "model_cost": { "cost_per_call": 0.25, "pricing_model": "fixed_cost_per_call" } }, "current_usage": { "requests_made": 6, "total_input_tokens": 120, "total_output_tokens": 9000, "total_cost": 1.50 } } }
d. Error Event (if an error occurs)
javascriptevent: error data: { "success": false, "request_id": "req_1234567890_abcdef", "error": { "type": "ProcessingError", "message": "An error occurred during research", "code": 500 } }
Error Responses
The API returns structured error responses with the following format:
{
"success": false,
"request_id": "req_1234567890_abcdef",
"error": {
"type": "ErrorType",
"message": "Error message details",
"code": 400
}
}
Common error types:
Type | Code | Description |
---|---|---|
ValidationError | 400 | Invalid request parameters |
EligibilityError | 403 | User not eligible for Deep Research |
RateLimitError | 429 | Too many requests or rate limit exceeded |
ProcessingError | 500 | Server error during processing |
Usage Limits and Pricing
- Fixed price: $0.25 USD per call
- Usage limits:
- Regular users: 50 calls per month
- Team accounts: 70 calls per month
- Unused calls do not roll over to the next month
Code Examples
// Example using EventSource for streaming
function performStreamingDeepResearch(query, callbacks) {
// Set up default callbacks
const {
onStart = () => {},
onActivity = () => {},
onComplete = () => {},
onError = () => {},
} = callbacks || {};
// Set up the request
const body = JSON.stringify({
model: 'deep-research',
messages: [{ role: 'user', content: query }],
options: {
stream: true,
maxDepth: 5,
timeLimit: 180,
maxUrls: 5,
},
});
// Create a unique request ID for the EventSource URL
const requestId = `req_${Date.now()}_${Math.random().toString(36).slice(2)}`;
// Use fetch to start a streaming connection
fetch('https://api.bineric.com/api/v1/ai/chat/completions', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'api-key': 'YOUR_API_KEY',
Accept: 'text/event-stream',
},
body: body,
})
.then((response) => {
if (!response.ok) {
throw new Error(`HTTP error! status: ${response.status}`);
}
// Create event source from response body
const reader = response.body.getReader();
const decoder = new TextDecoder();
let buffer = '';
function processEvents(result) {
if (result.done) return;
// Decode and append to buffer
buffer += decoder.decode(result.value, { stream: true });
// Process events in buffer
const lines = buffer.split('\n\n');
buffer = lines.pop() || ''; // Keep the last potentially incomplete event
for (const eventData of lines) {
if (!eventData.trim()) continue;
// Parse the event
const eventLines = eventData.split('\n');
const eventType = eventLines[0].replace('event: ', '');
const data = JSON.parse(eventLines[1].replace('data: ', ''));
// Handle different event types
switch (eventType) {
case 'info':
onStart(data);
break;
case 'activity':
onActivity(data);
break;
case 'complete':
onComplete(data);
return; // End processing
case 'error':
onError(data.error);
return; // End processing
default:
console.warn('Unknown event type:', eventType);
}
}
// Continue reading
reader.read().then(processEvents);
}
// Start reading the stream
reader.read().then(processEvents);
})
.catch((error) => {
onError({ type: 'ConnectionError', message: error.message });
});
}
Best Practices
- Use Streaming for Long Queries: For complex research topics that may take more than a few seconds, use streaming mode to provide real-time feedback to users
- Handle Errors Gracefully: Implement proper error handling to provide helpful feedback to users when research fails
- Limit Query Length: Keep research queries clear and focused for best results
- Manage Rate Limits: Track the user's remaining Deep Research usage and inform them when they're running low
- Display Citations Properly: Always display source citations alongside research results for proper attribution
Limitations
- Maximum of 5 parallel search queries by default
- Research may take up to 3 minutes for complex topics
- Usage is limited to 50/70 calls per month depending on account type
- Research is conducted only in languages supported by the search engine
Decoded Base64 API
/decode-base64
Decode Base64 content and return the original file.
Code Examples
import requests
headers = {
'api-key': 'YOUR_API_KEY',
'Content-Type': 'application/json'
}
response = requests.post(
'https://api.bineric.com/api/v1/decode-base64',
json={ 'data': '' },
headers=headers
)
with open("output_file.png", "wb") as file:
file.write(response.content)
Response Format
// Returns binary file with headers:
Content-Type: detected mime type
Content-Disposition: inline; filename="file.ext"
Usage Statistics API
/monitoring/usage
Get detailed usage statistics for AI model interactions.
Query Parameters
Parameter | Type | Required | Description |
---|---|---|---|
startDate | string | No | Start date for statistics (YYYY-MM-DD) |
endDate | string | No | End date for statistics (YYYY-MM-DD) |
Code Examples
import requests
api_key = 'YOUR_API_KEY'
headers = {
'api-key': api_key
}
params = {
'startDate': '2024-01-01',
'endDate': '2024-01-31'
}
response = requests.get(
'https://api.bineric.com/api/v1/monitoring/usage',
headers=headers,
params=params
)
stats = response.json()
print(stats)
Response Format
{
"success": true,
"data": {
"by_model": [
{
"model": string,
"usage": {
"input_tokens": number,
"output_tokens": number,
"total_cost": number,
"request_count": number
}
}
],
"total_usage": {
"total_cost": number,
"total_tokens": number,
"total_requests": number
},
"period": {
"start": string,
"end": string
}
}
}
Daily Usage Status API
/monitoring/daily-usage
Get daily usage metrics and payment status.
Code Examples
import requests
api_key = 'YOUR_API_KEY'
headers = {
'api-key': api_key
}
response = requests.get(
'https://api.bineric.com/api/v1/monitoring/daily-usage',
headers=headers
)
usage = response.json()
print(usage)
Response Format
{
"success": true,
"data": {
"payment_status": {
"active": boolean,
"expires_at": "2024-12-31T23:59:59.999Z" // Only included if payment is active
},
"today_usage": {
"requests": number,
"input_tokens": number,
"output_tokens": number,
"total_cost": number
},
"last_request": {
"time": "2024-12-31T23:59:59.999Z",
"model": string,
"cost": number
}
}
}
Balance and Usage API
/monitoring/balance
Get detailed balance and usage information.
Code Examples
import requests
api_key = 'YOUR_API_KEY'
headers = {
'api-key': api_key
}
response = requests.get(
'https://api.bineric.com/api/v1/monitoring/balance',
headers=headers
)
balance = response.json()
print(balance)
Response Format
{
"success": true,
"data": {
"balance": number,
"inputTokens": number,
"outputTokens": number,
"lastUpdated": "2024-12-31T23:59:59.999Z",
"payment_status": {
"active": boolean,
"expires": "2024-12-31T23:59:59.999Z" // Only included if payment is active
},
"usage": {
"daily": {
"requests": number,
"tokens": {
"input": number,
"output": number
},
"cost": number
},
"total": {
"input_tokens": number,
"output_tokens": number
}
}
}
}